

VENDREDI 2 JUIN 2023

« L'adaptation de la ville aux conséquences du changement climatique » de 14h à 17h à l'auditorium du Musée de la Chasse et de la Nature

62 rue des Archives - 75003 Paris

GT 2:

La réduction des risques d'inondation par la meilleure gestion des eaux pluviales

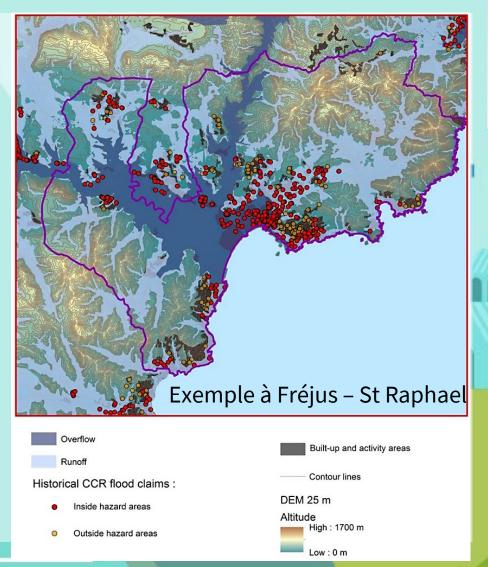
Enjeux et théorie, pistes de réponses et de recherches

Porteurs du GT2:

Katia Chancibault- <u>katia.chancibault@univ-eiffel.fr</u> Olivier Payrastre- <u>olivier.payrastre@univ-eiffel.fr</u>

Les risques liés au ruissellement

• Une part importante de la sinistralité:


Répartition de la part des coûts € des sinistres inondation selon la nature de l'aléa - sinistres 1995-2019 (CCR)

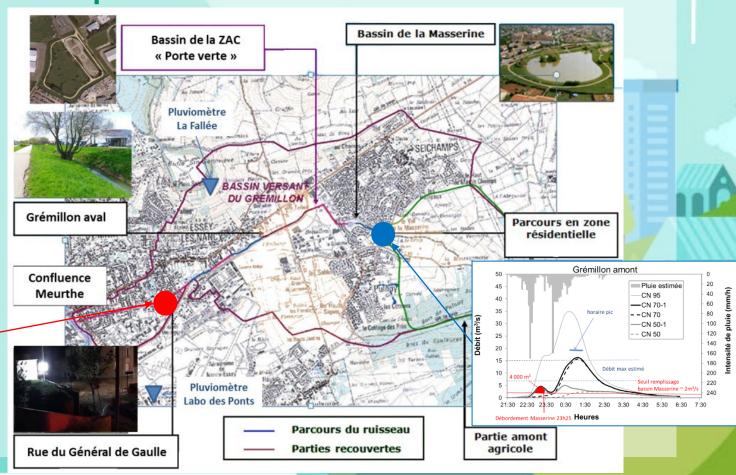
Débordement de cours d'eau	Ruissellement au sens large	
	ruissellement modélisé	hors zones d'aléa modélisées
40 %	20 %	40 %

Des coûts importants:

Coût moyen d'un sinistre par type de risque (CCR)

	Débordement	Ruissellement
Particuliers	11 k€	7 k€
Professionnels	35 k€	20 k€
Coût moyen/sinistre	14 k€	8 k€

Source: David Moncoulon, et al. (2020) La Houille Blanche, doi: 10.1051/lhb/2020058 & David Moncoulon, et al. (2014), Nhess, doi: 10.5194/nhess-14-2469-2014

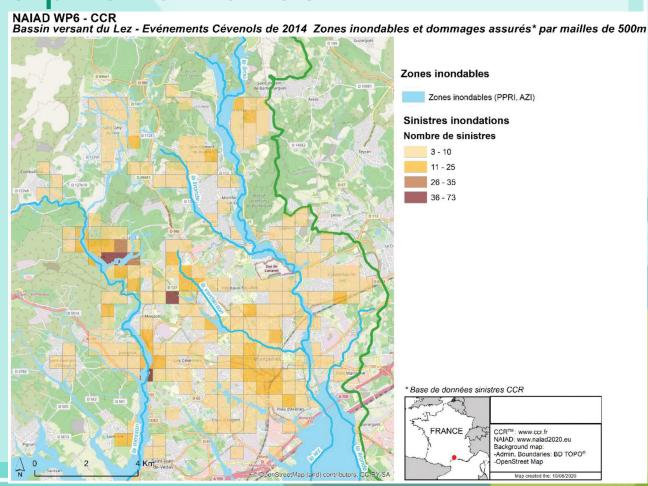

Ruissellement: plusieurs phénomènes

• Débordement de petits cours d'eau:

Exemple: Nancy – mai 2012

Contribution importante de la zone agricole en amont du BV du grémillon.

Ruissellement: plusieurs phénomènes


 Débordement de réseaux & concentration locale d'écoulements de surface

Exemple: Montpellier - sept. 2014

Une part importante de la sinistralité hors zones de débordements de cours d'eau.

Source: David Moncoulon, et al. (2020) La Houille Blanche, doi: 10.1051/lhb/2020058


Ruissellement: localisation de la sinistralité

- En zones urbaines (92%)
- Plutôt en zone d'alea fréquent (< 20 ans)

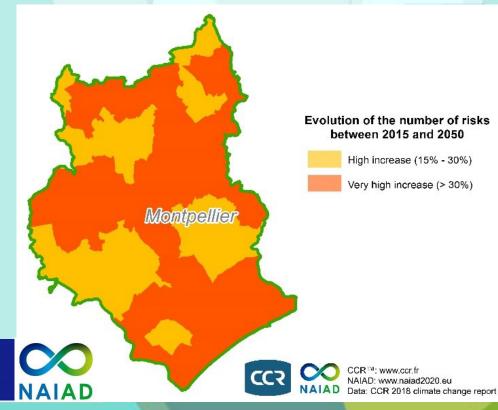
part des sinistres en zone d'alea ruissellement par périodes de retour - Période 1995-2019 (CCR)

Période de retour	Sinistres	Coût
< 20 ans	55 %	62 %
20-50 ans	23 %	20 %
50-100 ans	9 %	8 %
100-200 ans	7 %	6 %
> 200 ans	6 %	5 %

Atténuer l'alea fréquent peut avoir un effet sur la sinistralité (dont l'ampleur reste à évaluer)

Changement global, pluies extrêmes, et coûts

• Une augmentation des pluies extrêmes et une évolution démographique....


 Qui se traduisent par une augmentation des coûts:

Exemple: Montpellier

Cout moyen annuel de la sinistralité estimé (400 années):

Scenario	Nombre d'événements	Cout moyen interannuel
Climat 2015	43	7.2 M€
Climat 2050 (RCP 8.5)	57	9.2 M€

Atténuation de l'alea de 35% pour maintenir le cout au niveau de celui de 2015



Les solutions fondées sur la nature

Surfaces imperméabilisées => cycle de l'eau perturbé

- Fréquence et intensité des crues et des étiages
- Recharge des nappes

Les solutions fondées sur la nature

Surfaces anthropiques => bilan d'énergie pertubé

- Augmentation des températures,
- Particulièrement la nuit
- → ilot de chaleur urbain

Les solutions fondées sur la nature

> comment faire?

- Limiter l'imperméabilisation et les effets radiatifs
- Modifier l'aérodynamique (les vents localement)
- Augmenter l'évapotranspiration, l'infiltration, le stockage d'eau localer localement (gestion à la source)
- Solutions fondées sur la nature (eau, sol, végétation)
- Solutions grises (technologiques)

https://luxdomus.lu/quest-cequune-toiture-vegetalisee-ougreen-roof/

Noue Quartier Bottière-Chenaie (Nantes), Source LEE

https://www.c-ville.com/rain gardens-lovely-way-protectplanet/

Les questions:

- Quelle(s) origine(s) de la sinistralité « ruissellement » (cours d'eau, réseaux, écoulements locaux,...)
- Quelle capacité à appliquer largement les SfN?
- Quelle réduction possible des volumes ruisselés et de la sinsitralité, selon le niveau d'alea (fréquent/rare)?
- Quels impacts de combinaisons de SfN?
- Comment transférer les connaissances acquises en recherche vers des outils d'évaluation plus opérationnels?
- Quid de la ressource en eau dans le cadre de la végétalisation des villes, dans un contexte de sécheresses plus fréquentes?

Fondation Université Gustave Eiffel Bâtiment Bienvenüe – Bureau n°B344 14-20 Boulevard Newton · Champs-sur-Marne 77447 Marne-La-Vallée Cedex 2 univ-gustave-eiffel.fr/luniversite/noussoutenir/la-fondation

